

DESIGN OF CONTAINER SHIP PROPULSION SYSTEM

Noufal. P. Najeeb EMSHIP 5th Cohort, University of Galati Internship at ICEPRONAV Engineering S.R.L.

INTRODUCTION

• The main purpose of this work was to design the propulsion system including Main Engine, an optimized Propeller and Transmission line for a Container ship with following characteristics.

Particulars	Dimension
LENGTH BETWEEN PERPENDICULARS(M)	145.9
BREADTH(M)	23.25
DRAFT(M)	7.3
DEPTH(M)	11.5
SERVICE SPEED(KNOTS)	20
TEU	1200

OBJECTIVES

RESISTANCE

• The opposing hydrodynamic fluid force experienced by the ship due to its motion.

• Resistance calculations were performed for a range of speeds from 16 to 22 Knots.

RESULT COMPARISON

- The experimental method is more accurate compared to empirical methods.
- Hence the experimental result obtained as 722 KN at 20 knots has been used to start propeller design.

POWER ESTIMATION

The brake power of engine is influenced by

- Hull-Propeller interaction coefficients
- Hull, Relative rotative & Open water efficiencies.
- Sea and Engine margin as per owners requirement.

POWER & OPTIMUM RPM

													Pr	ор	elle	r									- 1	×
4	INPUT	Kt vs J Diagram									ОЛТРИТ															
BAR	0.8						[:			:					:		:		1:		Max Efficiency		0.670049	
No.of Blades	5				C	0.9	F												-	.[Pitch Ratio		0.9	
Resistance(KN)	722				0.	.75	Ŀ											·····,	/				Kt		0.188579	
wake Fraction	0.27						ţ	_										/					Kq		0.0278423	
Thrust Fraction	0.2			,	C	0.6	F			2	-						1	/					Advance Coeff		0.593566	
Diameter(m)	5.4	¥	2	2	0.	.45	ŀ		\geq	\sim							-						Rot per Second		2.3433	
Speed(KN)	20				C	0.3	Ŀ	_	1						\mathbf{i}	\leq							Rot per Minute		140.598	
Density(t/m3)	1.025				-		ţ	-	-	\subseteq	\geq		S	\geq	\leq								Thrust(KN)		902.503	
Viscocity	0.00000118				0.	.15					\geq	\geq	\langle							<			Delivered Pow(KW	0	10116.6	
Engine Mar(%)	10					0	L 0		 0.:	<u></u> 2		i		.6	0.8	3	1		1.2		1.4	2	Hull Efficiency		1.09589	
Sea Margin(%)	15												Ad	lvan	ce C	oeff :	I						Behind Hull		0.68345	
Shaft Eff(%)	98	_													_								Rotative Efficience	y	1.02	
Gear Eff(%)	100		_			_							F	RUN			_		_	_			QPC		0.748986	
No.of Prop	1																						Brake Power(KW)		13229.5	
		_	_	_	_	_	_	_	_	_	_	_	_	_			_		_	_	_	_		_		

ENGINE SELECTION

- Low speed diesel engine has been selected as per the required brake power and RPM estimated.
- Main advantages include compatibility with inexpensive fuel and low maintenance.

ENGINE MANUFACTURER	MAN
MODEL	K60MC-S
NO.OF CYLINDERS	7
BRAKE POWER	13860 KW
RPM	150

PROPELLER DESIGN

PRELIMINARY DESIGN

I.		Propeller-Diameter		- • ×
	INPUT	Kq vs J Diagram	C	DUTPUT
BAR.	0.8		Max Efficiency	0.663277
No.of Blades	5	0.18	Pitch Ratio	0.9
Brake Power	13860	0.15	Kt	0.192564
wake Fraction	0.27	0.12	Ka	0.0283296
Thrust Fraction Engine RPM	0.2	۲ 0.09 ۲ 0.09 ۲	Advance Coeff	0.585477
Draft of Ship	7.3	0.06	Diameter	5.31488
Service Speed	20	0.03	Torque	717.476
Density	1.025		Hull Efficiency	1.09589
Viscocity	0.00000118		Behind Hull	0.676542
Engine Margin(%)	10	Advance Coeff J	, Rotative Efficiency	1.02
Sea Margin(%)	15	RUN	OPC	0.741416
Shaft Efficiency	98		Qre	
Gear Efficiency	100			

DETAIL DESIGN

PROPELLER CHARACTERISTICS

r/R	CHORD LENGTH (MM)	THICKNESS (MM)	CAMBER (MM)	PITCH (MM)
0.2	1454.6	255.5	0	3622.1
0.3	1609.9	218.9	82.3	4174.6
0.4	1749.3	185	54.3	4328.8
0.5	1866.7	152.9	43	4373
0.6	1952.1	123.5	34.4	4403.7
0.7	1987.1	95.8	28.8	4426.1
0.8	1933.8	69.4	24.8	4451.7
0.9	1685.5	44.7	22.2	4447
1	0	2.3	10.6	4443.7

NUMERICAL ANALYSIS

- To study hydrodynamic performance of propeller under steady as well as unsteady flow conditions.
- Helps to select a most promising candidate design for model testing to save time and cost.

• Resistance computation by potential flow solver of shipflow based on a surface singularity panel method.

• Discretization by automatic medium mesh generation mode to perform faster computation.(No of Panels – 6666)

- The resistance data obtained from CFD method is in good agreement with experimental results.
- Result from CFD has been used during self-propulsion simulation.

OPEN WATER TEST

• Simulation to study the propeller characteristics in steady flow.

RESULT COMPARISON

- Propeller characteristics obtained through CFD analysis are in good agreement with experimental results as it follows same pattern.
- Variations are within the range of 2-3%.

SELF PROPULSION TEST

• The self-propulsion simulations were carried out to study the performance of propeller in non-uniform flow condition.

Pre – Processing

Structured & Overlapping Grids Turbulence – EASM

Computation RANSE solver – XCHAP

Post – Processing

Wake, Propeller Characteristics, Propeller Hull interactions, Delivered Power & RPM

RESULT COMPARISON

PARAMETERS	NUMERICAL	EXPERIMENTAL	DIFFERENCE IN %
Effective Mean Wake, w	0.277	0.273	1.44
Thrust Deduction, t	0.18	0.1766	1.88
Resistance(KN)	649	722	10.11
Thrust Coefficient, K_T	0.178	0.177	0.5
Torque Coefficient, K_Q	0.0242	0.026	7.4
Propeller Speed (RPM)	141	144.16	2.24
Delivered Power (KW)	8234	10243.7	19.6
Hull efficiency, η_H	1.183	1.1326	4.2
Relative rotative eff, η_R	1.018	1.0225	4.2
Propeller Efficiency, η_D	0.71	0.73	2.8

CONCLUSION

- Preliminary design, detail design and numerical analysis of final propeller were carried out.
- Strength has been verified at 0.25R and 0.6R blade sections using classification rules.
- Numerical method have predicted efficiently the hull-propeller interaction factors w, t & efficiencies($\eta_{R,}\eta_{H,}\eta_{0}$). Kt computed using CFD has a very reasonable accuracy while for Kq a larger deviation was observed.
- The wake adapted NACA propeller has been concluded as best available solution for containership with respect to its hydrodynamic performance.
- Finally a transmission system has been designed as per classification society requirement.